A Review Of Free DP-100 Exams

Master the DP-100 Designing and Implementing a Data Science Solution on Azure content and be ready for exam day success quickly with this Testking DP-100 sample question. We guarantee it!We make it a reality and give you real DP-100 questions in our Microsoft DP-100 braindumps.Latest 100% VALID Microsoft DP-100 Exam Questions Dumps at below page. You can use our Microsoft DP-100 braindumps and pass your exam.

Also have DP-100 free dumps questions for you:

NEW QUESTION 1

You are a data scientist creating a linear regression model.
You need to determine how closely the data fits the regression line. Which metric should you review?

  • A. Coefficient of determination
  • B. Recall
  • C. Precision
  • D. Mean absolute error
  • E. Root Mean Square Error

Answer: A

Explanation:
Coefficient of determination, often referred to as R2, represents the predictive power of the model as a value between 0 and 1. Zero means the model is random (explains nothing); 1 means there is a perfect fit. However, caution should be used in interpreting R2 values, as low values can be entirely normal and high values can be suspect.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/evaluate-model

NEW QUESTION 2

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.
You start by creating a linear regression model.
You need to evaluate the linear regression model.
Solution: Use the following metrics: Relative Squared Error, Coefficient of Determination, Accuracy, Precision, Recall, F1 score, and AUC.
Does the solution meet the goal?

  • A. Yes
  • B. No

Answer: B

Explanation:
Relative Squared Error, Coefficient of Determination are good metrics to evaluate the linear regression model, but the others are metrics for classification models.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/evaluate-model

NEW QUESTION 3

You are using a decision tree algorithm. You have trained a model that generalizes well at a tree depth equal to 10.
You need to select the bias and variance properties of the model with varying tree depth values.
Which properties should you select for each tree depth? To answer, select the appropriate options in the answer area.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
In decision trees, the depth of the tree determines the variance. A complicated decision tree (e.g. deep) has low bias and high variance.
Note: In statistics and machine learning, the bias–variance tradeoff is the property of a set of predictive models whereby models with a lower bias in parameter estimation have a higher variance of the parameter estimates across samples, and vice versa. Increasing the bias will decrease the variance. Increasing the variance will decrease the bias.
References:
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/

NEW QUESTION 4

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are analyzing a numerical dataset which contains missing values in several columns.
You must clean the missing values using an appropriate operation without affecting the dimensionality of the feature set.
You need to analyze a full dataset to include all values.
Solution: Calculate the column median value and use the median value as the replacement for any missing value in the column.
Does the solution meet the goal?

  • A. Yes
  • B. No

Answer: B

Explanation:
Use the Multiple Imputation by Chained Equations (MICE) method. References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean-missing-data

NEW QUESTION 5

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are creating a new experiment in Azure Machine Learning Studio.
One class has a much smaller number of observations than the other classes in the training set. You need to select an appropriate data sampling strategy to compensate for the class imbalance. Solution: You use the Scale and Reduce sampling mode.
Does the solution meet the goal?

  • A. Yes
  • B. No

Answer: B

Explanation:
Instead use the Synthetic Minority Oversampling Technique (SMOTE) sampling mode.
Note: SMOTE is used to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

NEW QUESTION 6

You are developing a machine learning, experiment by using Azure. The following images show the input and output of a machine learning experiment:
DP-100 dumps exhibit
Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic.
NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
DP-100 dumps exhibit

NEW QUESTION 7

You need to correct the model fit issue.
Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
Step 1: Augment the data
Scenario: Columns in each dataset contain missing and null values. The datasets also contain many outliers.
Step 2: Add the Bayesian Linear Regression module.
Scenario: You produce a regression model to predict property prices by using the Linear Regression and Bayesian Linear Regression modules.
Step 3: Configure the regularization weight.
Regularization typically is used to avoid overfitting. For example, in L2 regularization weight, type the value to use as the weight for L2 regularization. We recommend that you use a non-zero value to avoid overfitting.
Scenario:
Model fit: The model shows signs of overfitting. You need to produce a more refined regression model that reduces the overfitting.

NEW QUESTION 8

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.
You start by creating a linear regression model. You need to evaluate the linear regression model.
Solution: Use the following metrics: Accuracy, Precision, Recall, F1 score and AUC. Does the solution meet the goal?

  • A. Yes
  • B. No

Answer: B

Explanation:
Those are metrics for evaluating classification models, instead use: Mean Absolute Error, Root Mean Absolute Error, Relative Absolute Error, Relative Squared Error, and the Coefficient of Determination.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/evaluate-model

NEW QUESTION 9

You are performing sentiment analysis using a CSV file that includes 12,000 customer reviews written in a short sentence format. You add the CSV file to Azure Machine Learning Studio and configure it as the starting point dataset of an experiment. You add the Extract N-Gram Features from Text module to the experiment to extract key phrases from the customer review column in the dataset.
You must create a new n-gram dictionary from the customer review text and set the maximum n-gram size to trigrams.
What should you select? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
Vocabulary mode: Create
For Vocabulary mode, select Create to indicate that you are creating a new list of n-gram features. N-Grams size: 3
For N-Grams size, type a number that indicates the maximum size of the n-grams to extract and store. For example, if you type 3, unigrams, bigrams, and trigrams will be created.
Weighting function: Leave blank
The option, Weighting function, is required only if you merge or update vocabularies. It specifies how terms in the two vocabularies and their scores should be weighted against each other.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/extract-n-gram-features-from

NEW QUESTION 10

You are performing a classification task in Azure Machine Learning Studio.
You must prepare balanced testing and training samples based on a provided data set. You need to split the data with a 0.75:0.25 ratio.
Which value should you use for each parameter? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
Box 1: Split rows
Use the Split Rows option if you just want to divide the data into two parts. You can specify the percentage of data to put in each split, but by default, the data is divided 50-50.
You can also randomize the selection of rows in each group, and use stratified sampling. In stratified sampling, you must select a single column of data for which you want values to be apportioned equally among the two result datasets.
Box 2: 0.75
If you specify a number as a percentage, or if you use a string that contains the "%" character, the value is interpreted as a percentage. All percentage values must be within the range (0, 100), not including the values 0 and 100.
Box 3: Yes
To ensure splits are balanced. Box 4: No
If you use the option for a stratified split, the output datasets can be further divided by subgroups, by selecting a strata column.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/split-data

NEW QUESTION 11

You need to select an environment that will meet the business and data requirements. Which environment should you use?

  • A. Azure HDInsight with Spark MLlib
  • B. Azure Cognitive Services
  • C. Azure Machine Learning Studio
  • D. Microsoft Machine Learning Server

Answer: D

NEW QUESTION 12

You are building a machine learning model for translating English language textual content into French language textual content.
You need to build and train the machine learning model to learn the sequence of the textual content. Which type of neural network should you use?

  • A. Multilayer Perceptions (MLPs)
  • B. Convolutional Neural Networks (CNNs)
  • C. Recurrent Neural Networks (RNNs)
  • D. Generative Adversarial Networks (GANs)

Answer: C

Explanation:
To translate a corpus of English text to French, we need to build a recurrent neural network (RNN).
Note: RNNs are designed to take sequences of text as inputs or return sequences of text as outputs, or both. They’re called recurrent because the network’s hidden layers have a loop in which the output and cell state from each time step become inputs at the next time step. This recurrence serves as a form of memory. It allows contextual information to flow through the network so that relevant outputs from previous time steps can be applied to network operations at the current time step.
References:
https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571

NEW QUESTION 13

You are developing deep learning models to analyze semi-structured, unstructured, and structured data types. You have the following data available for model building:
DP-100 dumps exhibit Video recordings of sporting events
DP-100 dumps exhibit Transcripts of radio commentary about events
DP-100 dumps exhibit Logs from related social media feeds captured during sporting events You need to select an environment for creating the model.
Which environment should you use?

  • A. Azure Cognitive Services
  • B. Azure Data Lake Analytics
  • C. Azure HDInsight with Spark MLib
  • D. Azure Machine Learning Studio

Answer: A

Explanation:
Azure Cognitive Services expand on Microsoft’s evolving portfolio of machine learning APIs and enable developers to easily add cognitive features – such as emotion and video detection; facial, speech, and vision recognition; and speech and language understanding – into their applications. The goal of Azure Cognitive Services is to help developers create applications that can see, hear, speak, understand, and even begin to reason. The catalog of services within Azure Cognitive Services can be categorized into five main pillars - Vision, Speech, Language, Search, and Knowledge.
References:
https://docs.microsoft.com/en-us/azure/cognitive-services/welcome

NEW QUESTION 14

You arc I mating a deep learning model to identify cats and dogs. You have 25,000 color images.
You must meet the following requirements:
• Reduce the number of training epochs.
• Reduce the size of the neural network.
• Reduce over-fitting of the neural network.
You need to select the image modification values.
Which value should you use? To answer, select the appropriate Options in the answer area. NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
DP-100 dumps exhibit

NEW QUESTION 15

You create a binary classification model using Azure Machine Learning Studio.
You must use a Receiver Operating Characteristic (RO C) curve and an F1 score to evaluate the model. You need to create the required business metrics.
How should you complete the experiment? To answer, select the appropriate options in the dialog box in the answer area.
NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
DP-100 dumps exhibit

NEW QUESTION 16

You need to define an evaluation strategy for the crowd sentiment models.
Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
Step 1: Define a cross-entropy function activation
When using a neural network to perform classification and prediction, it is usually better to use cross-entropy error than classification error, and somewhat better to use cross-entropy error than mean squared error to
evaluate the quality of the neural network.
Step 2: Add cost functions for each target state. Step 3: Evaluated the distance error metric. References:
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

NEW QUESTION 17

You use the Two-Class Neural Network module in Azure Machine Learning Studio to build a binary classification model. You use the Tune Model Hyperparameters module to tune accuracy for the model.
You need to select the hyperparameters that should be tuned using the Tune Model Hyperparameters module. Which two hyperparameters should you use? Each correct answer presents part of the solution.
NOTE: Each correct selection is worth one point.

  • A. Number of hidden nodes
  • B. Learning Rate
  • C. The type of the normalizer
  • D. Number of learning iterations
  • E. Hidden layer specification

Answer: DE

Explanation:
D: For Number of learning iterations, specify the maximum number of times the algorithm should process the training cases.
E: For Hidden layer specification, select the type of network architecture to create.
Between the input and output layers you can insert multiple hidden layers. Most predictive tasks can be accomplished easily with only one or a few hidden layers.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-neural-network

NEW QUESTION 18

You are analyzing the asymmetry in a statistical distribution.
The following image contains two density curves that show the probability distribution of two datasets.
DP-100 dumps exhibit
Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic.
NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
Box 1: Positive skew
Positive skew values means the distribution is skewed to the right. Box 2: Negative skew
Negative skewness values mean the distribution is skewed to the left. References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/compute-elementary-statistic

NEW QUESTION 19

You need to implement a model development strategy to determine a user’s tendency to respond to an ad. Which technique should you use?

  • A. Use a Relative Expression Split module to partition the data based on centroid distance.
  • B. Use a Relative Expression Split module to partition the data based on distance travelled to the event.
  • C. Use a Split Rows module to partition the data based on distance travelled to the event.
  • D. Use a Split Rows module to partition the data based on centroid distance.

Answer: A

Explanation:
Split Data partitions the rows of a dataset into two distinct sets.
The Relative Expression Split option in the Split Data module of Azure Machine Learning Studio is helpful when you need to divide a dataset into training and testing datasets using a numerical expression.
Relative Expression Split: Use this option whenever you want to apply a condition to a number column. The number could be a date/time field, a column containing age or dollar amounts, or even a percentage. For example, you might want to divide your data set depending on the cost of the items, group people by age ranges, or separate data by a calendar date.
Scenario:
Local market segmentation models will be applied before determining a user’s propensity to respond to an advertisement.
The distribution of features across training and production data are not consistent References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/split-data

NEW QUESTION 20

You are creating a machine learning model. You need to identify outliers in the data.
Which two visualizations can you use? Each correct answer presents a complete solution.
NOTE: Each correct selection is worth one point. NOTE: Each correct selection is worth one point.

  • A. box plot
  • B. scatter
  • C. random forest diagram
  • D. Venn diagram
  • E. ROC curve

Answer: AB

Explanation:
The box-plot algorithm can be used to display outliers.
One other way to quickly identify Outliers visually is to create scatter plots. References:
https://blogs.msdn.microsoft.com/azuredev/2017/05/27/data-cleansing-tools-in-azure-machine-learning/

NEW QUESTION 21

You are performing feature scaling by using the scikit-learn Python library for x.1 x2, and x3 features. Original and scaled data is shown in the following image.
DP-100 dumps exhibit
Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic.
NOTE: Each correct selection is worth one point.
DP-100 dumps exhibit

  • A. Mastered
  • B. Not Mastered

Answer: A

Explanation:
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another. Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

NEW QUESTION 22
......

100% Valid and Newest Version DP-100 Questions & Answers shared by Dumpscollection.com, Get Full Dumps HERE: https://www.dumpscollection.net/dumps/DP-100/ (New 111 Q&As)